
Charm Tools Documentation

Cory Johns, Marco Ceppi, Kapil Thangavelu

Jan 27, 2021

Reference

1 Available Commands 3

2 Build Tactics 5
2.1 Built-in Tactics . 5
2.2 Custom Tactics . 11

3 Reproducible Charms 13
3.1 Creating the lock file . 13
3.2 Rebuilding the charm from the lock file . 14
3.3 Other useful information . 14

4 Contributing 15

5 Changelog 17
5.1 charm-tools 2.8.1 + charmstore-client 2.5.0 . 17
5.2 charm-tools 2.8.0 + charmstore-client 2.5.0 . 17
5.3 charm-tools 2.7.8 + charmstore-client 2.4.0+git-13-547c6f2 . 18
5.4 charm-tools 2.7.7 + charmstore-client 2.4.0+git-13-547c6f2 . 18
5.5 charm-tools 2.7.6 + charmstore-client 2.4.0+git-13-547c6f2 . 18
5.6 charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2 . 18
5.7 charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2 . 18
5.8 charm-tools 2.7.4 + charmstore-client 2.4.0+git-13-547c6f2 . 19
5.9 charm-tools 2.7.3 + charmstore-client 2.4.0+git-13-547c6f2 . 19
5.10 charm-tools 2.7.2 + charmstore-client 2.4.0+git-3-cbbf887 . 19
5.11 charm-tools 2.7.1 + charmstore-client 2.4.0 . 19
5.12 charm-tools 2.7.0 + charmstore-client 2.4.0 . 20
5.13 charm-tools 2.6.1 + charmstore-client 2.4.0 . 20
5.14 charm-tools 2.6.0 + charmstore-client 2.4.0 . 20

6 Indices and tables 23

Python Module Index 25

Index 27

i

ii

Charm Tools Documentation

The charm command includes several subcommands used to build, maintain, and release Juju Charms, which are Open
Source encapsulated operations logic for managing software in the cloud or bare-metal servers using cloud-like APIs.

Installation is easy with snaps:

snap install --classic charm

Reference for the various available commands can be found below, or via the command-line with:

charm help

Reference 1

https://docs.jujucharms.com/

Charm Tools Documentation

2 Reference

CHAPTER 1

Available Commands

The following subcommands are available and can be invoked as charm <command> (for example, charm
build). Details for each command, including the supported options and parameters, can be output with either charm
help <command> or charm <command> --help.

Command Description
add add icon, readme, or tests to a charm
attach upload a file as a resource for a charm
attach-plan associates the charm with the plan
build build a charm from layers and interfaces
create create a new charm
grant grant charm or bundle permissions
help Show help on a command or other topic.
layers Show a colored breakdown of what layers each file came from
list list charms for the given users.
list-plans list plans
list-resources display the resources for a charm in the charm store
login login to the charm store
logout logout from the charm store
proof perform static analysis on a charm or bundle
pull download a charm or bundle from the charm store
pull-resource pull a charm resource to the local machine
push push a charm or bundle into the charm store
push-plan push new plan
push-term create new Terms and Conditions document (revision)
release release a charm or bundle
release-term releases the given terms document
resume-plan resumes plan for specified charms
revoke revoke charm or bundle permissions
set set charm or bundle extra-info, home page or bugs URL
show print information on a charm or bundle

Continued on next page

3

Charm Tools Documentation

Table 1 – continued from previous page
Command Description
show-plan show plan details
show-plan-revisions show all revision of a plan
show-term shows the specified term
suspend-plan suspends plan for specified charms
terms list terms owned by the current user
terms-used list terms required by current user’s charms
version display tooling version information
whoami display jaas user id and group membership

4 Chapter 1. Available Commands

CHAPTER 2

Build Tactics

When building charms, multiple layers are brought together in an ordered, depth-first recursive fashion. The individual
files of each layer are merged according to a list of merge tactics. These tactics determine whether the file from a
higher layer will replace or be merged with the copy from the lower layer, with the details of how the merge happens
being implemented by the tactic. Each file is tested against each tactic in a specific order (as determined by the
DEFAULT_TACTICS list), with the first one to match being applied to the file and all other tactics disregarded.

2.1 Built-in Tactics

ActionsYAML Tactic for processing and combining the actions.
yaml file from each layer.

ConfigYAML Tactic for processing and combining the config.
yaml file from each layer.

CopyTactic Tactic to copy a file without modification or merging.
CopyrightTactic Tactic to combine the copyright info from all layers into

a final machine-readable format.
DistYAML Tactic for processing and combining the dist.yaml

file from each layer.
DynamicHookBind Base class for process hooks dynamically generated

from the hook template.
ExactMatch Mixin to match a file with an exact name.
ExcludeTactic Tactic to handle per-layer excludes.
IgnoreTactic Tactic to handle per-layer ignores.
InstallerTactic Tactic to process any .pypi files and install Python

packages directly into the charm’s lib/ directory.
InterfaceBind Tactic to copy the hook template into place for all rela-

tion hooks.
InterfaceCopy Tactic to process a relation endpoint using an interface

layer.
Continued on next page

5

Charm Tools Documentation

Table 1 – continued from previous page
JSONTactic Base class for tactics dealing with JSON data.
LayerYAML Tactic for processing and combining the layer.yaml

file from each layer.
ManifestTactic Tactic to avoid copying a build manifest file from a base

layer.
MetadataYAML Tactic for processing and combining the metadata.

yaml file from each layer.
ResourcesYAML Tactic for processing and combining the resources.

yaml file from each layer.
SerializedTactic Base class for tactics which deal with serialized data,

such as YAML or JSON.
StandardHooksBind Tactic to copy the hook template into place for all stan-

dard hooks.
StorageBind Tactic to copy the hook template into place for all stor-

age hooks.
Tactic Base class for all tactics.
VersionTactic Tactic to generate the version file with VCS revision

info to be displayed in juju status.
WheelhouseTactic Tactic to process the wheelhouse.txt file and build

a source-only wheelhouse of Python packages in the
charm’s wheelhouse/ directory.

YAMLTactic Base class for tactics dealing with YAML data.
extend_with_default Extend a jsonschema validator to propagate default val-

ues prior to validating.
load_tactic Load a tactic from the current layer using a dotted path.

class charmtools.build.tactics.ActionsYAML(*args, **kwargs)
Tactic for processing and combining the actions.yaml file from each layer.

class charmtools.build.tactics.ConfigYAML(*args, **kwargs)
Tactic for processing and combining the config.yaml file from each layer.

class charmtools.build.tactics.CopyTactic(entity, target, layer, next_config)
Tactic to copy a file without modification or merging.

The last version of the file “wins” (e.g., from the charm layer).

This is the final fallback tactic if nothing else matches.

class charmtools.build.tactics.CopyrightTactic(*args, **kwargs)
Tactic to combine the copyright info from all layers into a final machine-readable format.

class charmtools.build.tactics.DistYAML(*args, **kwargs)
Tactic for processing and combining the dist.yaml file from each layer.

class charmtools.build.tactics.DynamicHookBind(name, owner, target, config, output_files,
template_file)

Base class for process hooks dynamically generated from the hook template.

This tactic is not used directly, but serves as a base for the type-specific dynamic hook tactics, like
StandardHooksBind, or InterfaceBind.

HOOKS = []
List of all hooks to populate.

sign()
Sign all hook files generated by this tactic.

6 Chapter 2. Build Tactics

Charm Tools Documentation

class charmtools.build.tactics.ExactMatch
Mixin to match a file with an exact name.

FILENAME = None
The filename to be matched

classmethod trigger(entity, target, layer, next_config)
Match if the current entity’s filename is what we’re looking for.

class charmtools.build.tactics.ExcludeTactic(entity, target, layer, next_config)
Tactic to handle per-layer excludes.

If a given layer’s layer.yaml has an exclude list, then any file or directory included in that list that is
provided by the current layer will be ignored, though any matching file or directory provided by base layers or
any higher level layers will be included.

The exclude list uses the same format as a .gitignore file.

class charmtools.build.tactics.IgnoreTactic(entity, target, layer, next_config)
Tactic to handle per-layer ignores.

If a given layer’s layer.yaml has an ignore list, then any file or directory included in that list that is
provided by base layers will be ignored, though any matching file or directory provided by the current or any
higher level layers will be included.

The ignore list uses the same format as a .gitignore file.

class charmtools.build.tactics.InstallerTactic(entity, target, layer, next_config)
Tactic to process any .pypi files and install Python packages directly into the charm’s lib/ directory.

This is used in Kubernetes type charms due to the lack of a proper install or bootstrap phase.

class charmtools.build.tactics.InterfaceBind(name, owner, target, config, output_files,
template_file)

Tactic to copy the hook template into place for all relation hooks.

This tactic is not part of the normal set of tactics that are matched against files. Instead, it is manually called to
fill in the set of relation hooks needed by this charm.

class charmtools.build.tactics.InterfaceCopy(interface, relation_name, role, target, con-
fig)

Tactic to process a relation endpoint using an interface layer.

This tactic is not part of the normal set of tactics that are matched against files. Instead, it is manually called for
each relation endpoint that has a corresponding interface layer.

class charmtools.build.tactics.JSONTactic(*args, **kwargs)
Base class for tactics dealing with JSON data.

dump(data)
Serialize and write the data to the file.

Must be impelemented by a subclass.

load(fn)
Load and deserialize the data from the file.

Must be impelemented by a subclass.

class charmtools.build.tactics.LayerYAML(*args, **kwargs)
Tactic for processing and combining the layer.yaml file from each layer.

The input layer.yaml files can contain the following sections:

2.1. Built-in Tactics 7

Charm Tools Documentation

• includes This is the heart of layering. Layers and interface layers referenced in this list value are pulled
in during charm build and combined with each other to produce the final layer.

• defines This object can contain a jsonschema used to define and validate options passed to this layer
from another layer. The options and schema will be namespaced by the current layer name.

• options This object can contain option name/value sections for other layers.

• config, metadata, dist, or resources These objects can contain a deletes object to list keys
that should be deleted from the resulting <section>.yaml.

Example, layer foo might define this layer.yaml file:

includes:
- layer:basic
- interface:foo

defines:
foo-opt:
type: string
default: 'foo-default'

options:
basic:

use_venv: true

And layer bar might define this layer.yaml file:

includes:
- layer:foo

options:
foo-opt: 'bar-value'

metadata:
deletes:

- 'requires.foo-relation'

class charmtools.build.tactics.ManifestTactic(entity, target, layer, next_config)
Tactic to avoid copying a build manifest file from a base layer.

class charmtools.build.tactics.MetadataYAML(*args, **kwargs)
Tactic for processing and combining the metadata.yaml file from each layer.

class charmtools.build.tactics.ResourcesYAML(*args, **kwargs)
Tactic for processing and combining the resources.yaml file from each layer.

class charmtools.build.tactics.SerializedTactic(*args, **kwargs)
Base class for tactics which deal with serialized data, such as YAML or JSON.

apply_edits()
Apply any edits defined in the final layer.yaml file to the data.

An example edit definition:

metadata:
deletes:
- requires.http

combine(existing)
Merge the deserialized data from two layers using deepmerge.

dump(data)
Serialize and write the data to the file.

Must be impelemented by a subclass.

8 Chapter 2. Build Tactics

Charm Tools Documentation

load(fn)
Load and deserialize the data from the file.

Must be impelemented by a subclass.

process()
Now that the tactics for the current entity have been combined for all layers, process the entity to produce
the final output file.

Must be implemented by a subclass.

read()
Read and cache the data into memory, using self.load().

class charmtools.build.tactics.StandardHooksBind(name, owner, target, config, out-
put_files, template_file)

Tactic to copy the hook template into place for all standard hooks.

This tactic is not part of the normal set of tactics that are matched against files. Instead, it is manually called to
fill in the standard set of hook implementations.

class charmtools.build.tactics.StorageBind(name, owner, target, config, output_files, tem-
plate_file)

Tactic to copy the hook template into place for all storage hooks.

This tactic is not part of the normal set of tactics that are matched against files. Instead, it is manually called to
fill in the set of storage hooks needed by this charm.

class charmtools.build.tactics.Tactic(entity, target, layer, next_config)
Base class for all tactics.

Subclasses must implement at least trigger and process, and probably also want to implement combine.

combine(existing)
Produce a tactic informed by the existing tactic for an entry.

This is when a rule in a higher level charm overrode something in one of its bases for example.

Should be implemented by a subclass if any sort of merging behavior is desired.

config
Return the combined config from the layer above this (if any), this, and all lower layers.

Note that it includes one layer higher so that the tactic can make decisions based on the upcoming layer.

current
Alias for Tactic.layer

entity
The current entity (a.k.a. file) being processed.

classmethod get(entity, target, layer, next_config, current_config, existing_tactic)
Factory method to get an instance of the correct Tactic to handle the given entity.

layer
The current layer under consideration

layer_name
Name of the current layer being processed.

lint()
Test the resulting file to ensure that it is valid.

Return True if valid. If invalid, return False or raise a BuildError

2.1. Built-in Tactics 9

Charm Tools Documentation

Should be implemented by a subclass.

process()
Now that the tactics for the current entity have been combined for all layers, process the entity to produce
the final output file.

Must be implemented by a subclass.

read()
Read the contents of the file to be processed.

Can be implemented by a subclass. By default, returns None.

relpath
The path to the file relative to the layer.

sign()
Return signature in the form {relpath: (origin layer, SHA256)}

Can be overridden by a subclass, but the default implementation will usually be fine.

target
The target (final) layer.

target_file
The location where the processed file will be written to.

classmethod trigger(entity, target, layer, next_config)
Determine whether the rule should apply to a given entity (file).

Generally, this should check the entity name, but could conceivably also inspect the contents of the file.

Must be implemented by a subclass or the tactic will never match.

class charmtools.build.tactics.VersionTactic(charm, target, layer, next_config)
Tactic to generate the version file with VCS revision info to be displayed in juju status.

This tactic is not part of the normal set of tactics that are matched against files. Instead, it is manually called to
generate the version file.

class charmtools.build.tactics.WheelhouseTactic(*args, **kwargs)
Tactic to process the wheelhouse.txt file and build a source-only wheelhouse of Python packages in the
charm’s wheelhouse/ directory.

read()
Read the contents of the file to be processed.

Can be implemented by a subclass. By default, returns None.

class charmtools.build.tactics.YAMLTactic(*args, **kwargs)
Base class for tactics dealing with YAML data.

Tries to ensure that the order of keys is preserved.

dump(data)
Serialize and write the data to the file.

Must be impelemented by a subclass.

load(fn)
Load and deserialize the data from the file.

Must be impelemented by a subclass.

10 Chapter 2. Build Tactics

Charm Tools Documentation

charmtools.build.tactics.extend_with_default(validator_class)
Extend a jsonschema validator to propagate default values prior to validating.

Used internally to ensure validation of layer options supports default values.

charmtools.build.tactics.load_tactic(dpath, basedir)
Load a tactic from the current layer using a dotted path.

The final element in the path should be a Tactic subclass.

2.2 Custom Tactics

A charm or layer can also define one or more custom tactics in its layer.yaml file. The file can contain a top-level
tactics key, whose value is a list of dotted Python module names, relative to the layer’s base directory. For example,
a layer could include this in its layer.yaml:

tactics:
- tactics.my_layer.READMETactic

This would cause the build command to look for a module tactics/my_layer.py with a class of
READMETactic in it, which must inherit from Tactic.

Custom tactics are tested before the built-in tactics, so they can override the behavior of built-in tactics if desired. Care
should be taken if doing this because changing the behavior of built-in tactics can end up breaking other layers or
charms.

2.2. Custom Tactics 11

Charm Tools Documentation

12 Chapter 2. Build Tactics

CHAPTER 3

Reproducible Charms

When building charms, multiple layers are brought together in an ordered, depth-first recursive fashion. The individual
files of each layer are merged, and then python modules are brought in according to wheelhouse.txt files that
may exist in each layer.

Layers (and Interfaces) are typically Git repositories, and by default the default branch (usually called master) of
the repository is fetched and used.

Also, although the top level Python modules can be pinned in the wheelhouse.txt files, any dependent modules
are fetched as their latest versions. This makes re-building a charm with the same layers and modules tricky, which
may be required for stable charms. It is possible, by populating layer and interface directories directly, and by pinning
every Python module in a wheelhouse.txt override file that is passed using the --wheelhouse-overrides
option to the charm build command.

An alternative strategy is to use a new feature of the charm build command which can generate a lock file that
contains all of the layers and Python modules, and their versions. This can then, for subsequent builds, be used to
fetch the same layer versions and Python modules to re-create the charm.

As the lock file is a JSON file, it can be manually edited to change a layer version if a new version of a stable charm
is needed, or a python module can be changed.

Additionally, it is possible to track a branch in the repository for a layer so that a stable (or feature) branch can be
maintained and then charms rebuilt from that branch.

The new options for this feature are:

• --write-lock-file

• --use-lock-file-branches

• --ignore-lock-file

3.1 Creating the lock file

To create a lock file, the option --write-lock-file is passed to the charm build command. This option
automatically ignores the existing lock file, and rebuilds the charm using the latest versions of the layers and the

13

Charm Tools Documentation

versions of the modules as determined in the various wheelhouse.txt files.

Python module versions are also recorded. If a VCS repository is used for the python module, then any branch
specified is also recorded, along with the commit.

At the end of the build, the lock file is written with all of the layer and Python module information.

The lock file is installed in the base layer directory so that it can be committed into the VCS and used for subsequent
builds.

The name of the lock file is build.lock.

3.2 Rebuilding the charm from the lock file

If a lock file (build.lock) is available in the top layer, then it will be used to control the versions of the layers and
modules by default. i.e. the presence of the lock file controls the build.

Three options are available which can influence the build when a lock file is present:

• --ignore-lock-file

• --use-lock-file-branches

• --wheelhouse-overrides

If the --ignore-lock-file option is used, then the charm is built as though there is no lock file.

If the --use-lock-file-branches is used, then, for VCS items (layers, interfaces, and Python modules speci-
fied using a VCS string), then the branch (if there was one) will be used, rather than the commit version. This can be
used to track a branch in a layer or Python module.

Note: if --wheelhouse-overrides is used, then that wheelhouse will override the lock file. i.e. the lock file
overrides the layers’ wheelhouse.txt file, and then the --wheelhouse-overrides then can override the
lock-file. This is intentional to allow the build to perform specific overrides as needed.

3.3 Other useful information

This is the first iteration of ‘reproducible charms’. As such, only Git is supported as the VCS for the layers, and Git
and Bazaar for Python modules. A future iteration may support more VCS systems.

Only the top layer is inspected for a build.lock file. Any other layers are considered inputs and their build.
lock files are ignored (if they are present).

Also, regardless of the wheelhouse.txt layers, the lock file will override any changes that may be introduced
in stable branches, if they are bing tracked using --use-lock-file-branches. This may lead to unexpected
behaviour.

14 Chapter 3. Reproducible Charms

CHAPTER 4

Contributing

The charm command is created from the combination of two repositorires:

• charm-tools handles local operations, such as building and linting charms

• charmstore-client handles interactions with the charm store, such as pushing or pulling charms, or managing
access controls

Bugs should be filed against the appropriate repository for the most efficient handling.

15

https://snapcraft.io/charm/
https://github.com/juju/charm-tools/
https://github.com/juju/charmstore-client/

Charm Tools Documentation

16 Chapter 4. Contributing

CHAPTER 5

Changelog

5.1 charm-tools 2.8.1 + charmstore-client 2.5.0

Wednesday January 27 2021

charm-tools

• Add option to create .charm file (#592)

• Add ‘docs’ to known metadata fields (#591)

• Add reproducible charm build feature (#585)

• Fix exception rendering “already promulgated” error (#590)

• Align setup.py to requirements.txt (#589)

• Fix TypeError from linter on X.Y min-juju-version (#588)

• Make output_dir the same as build_dir (#564)

5.2 charm-tools 2.8.0 + charmstore-client 2.5.0

Tuesday November 10 2020

charm-tools

• Fix snap build for updated charmstore-client (#587)

• Store rev when pull-source on a subdir layer (#583)

• Add revision info to output of pull-source (#582)

• Add –branch option to pull-source (#581)

• Raise more useful BuildError on missing pkg name (#579)

• Deprecate Operator charm template (#578)

17

Charm Tools Documentation

charmstore-client

• Update dependencies

• Make charm-push support archives

5.3 charm-tools 2.7.8 + charmstore-client 2.4.0+git-13-547c6f2

Tuesday July 21 2020

charm-tools

• Normalize package names when processing wheelhouse (#576)

5.4 charm-tools 2.7.7 + charmstore-client 2.4.0+git-13-547c6f2

Monday July 20 2020

charm-tools

• Fix handling of comments in wheelhouse (#574)

5.5 charm-tools 2.7.6 + charmstore-client 2.4.0+git-13-547c6f2

Thursday July 16 2020

charm-tools

• Switch to requirements-parser for wheelhouse (#572)

5.6 charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2

Thursday June 25 2020

charm-tools

• Process wheelhouse.txt holistically rather than per-layer (#569)

• Handle invalid config file more gracefully (#567)

• Default to charming category of the Juju Discourse (#565)

5.7 charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2

Thursday June 25 2020

charm-tools

• Process wheelhouse.txt holistically rather than per-layer (#569)

• Handle invalid config file more gracefully (#567)

• Default to charming category of the Juju Discourse (#565)

18 Chapter 5. Changelog

Charm Tools Documentation

5.8 charm-tools 2.7.4 + charmstore-client 2.4.0+git-13-547c6f2

Thursday March 26 2020

charm-tools

• Add workaround for user site package conflicts (#561)

• Add Build Snap action so PRs have snap to test easily (#562)

5.9 charm-tools 2.7.3 + charmstore-client 2.4.0+git-13-547c6f2

Saturday Feb 29 2020

charm-tools

• Add Operator charm template (#557)

• Add OpenStack templates to requirements (#558)

• Fix 471 (#556)

• Add functions support; (#555)

• Allow boolean config options to have null default (#554)

charmstore-client

• fix dependencies

• cmd/charm: allow users with domains in ACLs

• Updated charmstore and charmrepo dependency.

• charm whoami: return an error when the user is not logged in

• Update dependencies

• Fix dependency files

5.10 charm-tools 2.7.2 + charmstore-client 2.4.0+git-3-cbbf887

Tuesday October 8 2019

charm-tools

• Add opendev.org https and git fetcher (#553)

charmstore-client

• Disallow release in promulgated namespace

5.11 charm-tools 2.7.1 + charmstore-client 2.4.0

Tuesday September 24 2019

charm-tools

• Fix maintainer validation not handling unicode (#550)

5.8. charm-tools 2.7.4 + charmstore-client 2.4.0+git-13-547c6f2 19

Charm Tools Documentation

• Fix snap builds on other arches (#548)

• Change deployment.type optional (for k8s charms) (#547)

• Move daemonset to deployment.type (for k8s charms) (#546)

5.12 charm-tools 2.7.0 + charmstore-client 2.4.0

Wednesday September 18 2019

charm-tools

• Fix charm-build conflict when building concurrently (#545)

• Rename README files with markdown extension (#543)

• Update charm.1 manpage (#522)

• Feature/add deployment field2metadata (#544)

• fix charm build help message (#542)

• Cleanup cached layers / interfaces after build (#540)

• edge case for setting charm_ver (#538)

5.13 charm-tools 2.6.1 + charmstore-client 2.4.0

Thursday July 11 2019

charm-tools

• Remove bad URL from PR template (#537)

• Update pypi release target to work with newer tox (#530)

• requirements.txt: update version limit for requests (#535) (#536)

• Fix config key regexp to allow short config keys. (#534)

5.14 charm-tools 2.6.0 + charmstore-client 2.4.0

Thursday June 6 2019

charm-tools

• Honor ignores / excludes when checking for post-build changes (#529)

• Resolve vergit runtime dependency (#527)

• Upgrade to use py3.7 on Travis (#523)

• Fix installing from git without vergit installed (#520)

• Fix installation dependency on vergit (#519)

• Gracefully handle JSON decode errors from layer index (#516)

• Add support for layer-index and fallback-layer-index (#515)

• Ensure setuptools for charmstore-client build (#509)

20 Chapter 5. Changelog

Charm Tools Documentation

• Refactor version handling in snap to work with core18 (#508)

• Make series required (#499)

• Add setuptools to requirements.txt (#498)

• Fix charm-layer handling of old format build-manifest (#496)

• Fix nested build dir check in Python2 (#494)

• Improve docs for LayerYAML tactic (#493)

• Add promulgate and unpromulgate commands (#491)

• Fix and improve charm-layers (#492)

• Fix checking of build dir nested under source dir (#490)

• Add basic documentation (#489)

• Allow build folders in the charm (#486)

• Fix CHARM_HIDE_METRICS environment variable (#483)

• Address security alerts from GitHub (#484)

• Use shutil.copytree instead of path.rename (#482)

charmstore-client

• Remove the temporary file

• update charmrepo dependency

• update charm dependency

• internal/ingest: set permissions correctly

• cmd/charm-ingest: use –hardlimit not –softlimit

• cmd/charm-ingest: expose disk limits

• make tests pass

• internal/ingest: transfer resources

• cmd/charm-ingest: Add a basic ingest command

• internal/ingest: resolve resources in whitelist

• internal/ingest: expose public ingest API.

• cmd/charm-ingest: Add the basics of whitelist parsing

• restore go-cmp dependency version

• Move cmd/ingest to internal/ingest

• cmd/ingest: fix comment from previous review

• cmd/ingest: run tests against real charmstore servers

• cmd/ingest: core ingestion logic

• cmd/charm/charmcmd: add some basic tests for show command

• cmd/charm/charmcmd: improve output in charm show for unpublished charms

• cmd/ingest: new ingest command

• cmd/charm/charmcmd: improve incompatible registry version error

5.14. charm-tools 2.6.0 + charmstore-client 2.4.0 21

Charm Tools Documentation

• Update usage of docker to oci-image resource type.

• Reviews.

• cmd/charmcmd: Better yaml output for resources.

• cmd/charmcmd: Allow multiple users in list.

• all: use quicktest for tests

22 Chapter 5. Changelog

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

23

Charm Tools Documentation

24 Chapter 6. Indices and tables

Python Module Index

c
charmtools.build.tactics, 6

25

Charm Tools Documentation

26 Python Module Index

Index

A
ActionsYAML (class in charmtools.build.tactics), 6
apply_edits() (charm-

tools.build.tactics.SerializedTactic method),
8

C
charmtools.build.tactics (module), 6
combine() (charmtools.build.tactics.SerializedTactic

method), 8
combine() (charmtools.build.tactics.Tactic method), 9
config (charmtools.build.tactics.Tactic attribute), 9
ConfigYAML (class in charmtools.build.tactics), 6
CopyrightTactic (class in charmtools.build.tactics),

6
CopyTactic (class in charmtools.build.tactics), 6
current (charmtools.build.tactics.Tactic attribute), 9

D
DistYAML (class in charmtools.build.tactics), 6
dump() (charmtools.build.tactics.JSONTactic method),

7
dump() (charmtools.build.tactics.SerializedTactic

method), 8
dump() (charmtools.build.tactics.YAMLTactic method),

10
DynamicHookBind (class in charmtools.build.tactics),

6

E
entity (charmtools.build.tactics.Tactic attribute), 9
ExactMatch (class in charmtools.build.tactics), 6
ExcludeTactic (class in charmtools.build.tactics), 7
extend_with_default() (in module charm-

tools.build.tactics), 10

F
FILENAME (charmtools.build.tactics.ExactMatch

attribute), 7

G
get() (charmtools.build.tactics.Tactic class method), 9

H
HOOKS (charmtools.build.tactics.DynamicHookBind at-

tribute), 6

I
IgnoreTactic (class in charmtools.build.tactics), 7
InstallerTactic (class in charmtools.build.tactics),

7
InterfaceBind (class in charmtools.build.tactics), 7
InterfaceCopy (class in charmtools.build.tactics), 7

J
JSONTactic (class in charmtools.build.tactics), 7

L
layer (charmtools.build.tactics.Tactic attribute), 9
layer_name (charmtools.build.tactics.Tactic at-

tribute), 9
LayerYAML (class in charmtools.build.tactics), 7
lint() (charmtools.build.tactics.Tactic method), 9
load() (charmtools.build.tactics.JSONTactic method),

7
load() (charmtools.build.tactics.SerializedTactic

method), 9
load() (charmtools.build.tactics.YAMLTactic method),

10
load_tactic() (in module charmtools.build.tactics),

11

M
ManifestTactic (class in charmtools.build.tactics),

8
MetadataYAML (class in charmtools.build.tactics), 8

P
process() (charmtools.build.tactics.SerializedTactic

method), 9

27

Charm Tools Documentation

process() (charmtools.build.tactics.Tactic method),
10

R
read() (charmtools.build.tactics.SerializedTactic

method), 9
read() (charmtools.build.tactics.Tactic method), 10
read() (charmtools.build.tactics.WheelhouseTactic

method), 10
relpath (charmtools.build.tactics.Tactic attribute), 10
ResourcesYAML (class in charmtools.build.tactics), 8

S
SerializedTactic (class in charm-

tools.build.tactics), 8
sign() (charmtools.build.tactics.DynamicHookBind

method), 6
sign() (charmtools.build.tactics.Tactic method), 10
StandardHooksBind (class in charm-

tools.build.tactics), 9
StorageBind (class in charmtools.build.tactics), 9

T
Tactic (class in charmtools.build.tactics), 9
target (charmtools.build.tactics.Tactic attribute), 10
target_file (charmtools.build.tactics.Tactic at-

tribute), 10
trigger() (charmtools.build.tactics.ExactMatch class

method), 7
trigger() (charmtools.build.tactics.Tactic class

method), 10

V
VersionTactic (class in charmtools.build.tactics), 10

W
WheelhouseTactic (class in charm-

tools.build.tactics), 10

Y
YAMLTactic (class in charmtools.build.tactics), 10

28 Index

	Available Commands
	Build Tactics
	Built-in Tactics
	Custom Tactics

	Reproducible Charms
	Creating the lock file
	Rebuilding the charm from the lock file
	Other useful information

	Contributing
	Changelog
	charm-tools 2.8.1 + charmstore-client 2.5.0
	charm-tools 2.8.0 + charmstore-client 2.5.0
	charm-tools 2.7.8 + charmstore-client 2.4.0+git-13-547c6f2
	charm-tools 2.7.7 + charmstore-client 2.4.0+git-13-547c6f2
	charm-tools 2.7.6 + charmstore-client 2.4.0+git-13-547c6f2
	charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2
	charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2
	charm-tools 2.7.4 + charmstore-client 2.4.0+git-13-547c6f2
	charm-tools 2.7.3 + charmstore-client 2.4.0+git-13-547c6f2
	charm-tools 2.7.2 + charmstore-client 2.4.0+git-3-cbbf887
	charm-tools 2.7.1 + charmstore-client 2.4.0
	charm-tools 2.7.0 + charmstore-client 2.4.0
	charm-tools 2.6.1 + charmstore-client 2.4.0
	charm-tools 2.6.0 + charmstore-client 2.4.0

	Indices and tables
	Python Module Index
	Index

