

Charm Tools documentation

The charm command includes several subcommands used to build, maintain,
and release Juju Charms [https://docs.jujucharms.com/], which are Open Source encapsulated operations
logic for managing software in the cloud or bare-metal servers using
cloud-like APIs.

Installation is easy with snaps:

snap install --classic charm

Reference for the various available commands can be found below, or via
the command-line with:

charm help

Reference

	Available Commands

	Build Tactics
	Built-in Tactics

	Custom Tactics

	Reproducible Charms
	Creating the lock file

	Rebuilding the charm from the lock file

	Other useful information

Project

	Contributing

	Changelog
	charm-tools 2.8.2 + charmstore-client 2.5.0

	charm-tools 2.8.1 + charmstore-client 2.5.0

	charm-tools 2.8.0 + charmstore-client 2.5.0

	charm-tools 2.7.8 + charmstore-client 2.4.0+git-13-547c6f2

	charm-tools 2.7.7 + charmstore-client 2.4.0+git-13-547c6f2

	charm-tools 2.7.6 + charmstore-client 2.4.0+git-13-547c6f2

	charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2

	charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2

	charm-tools 2.7.4 + charmstore-client 2.4.0+git-13-547c6f2

	charm-tools 2.7.3 + charmstore-client 2.4.0+git-13-547c6f2

	charm-tools 2.7.2 + charmstore-client 2.4.0+git-3-cbbf887

	charm-tools 2.7.1 + charmstore-client 2.4.0

	charm-tools 2.7.0 + charmstore-client 2.4.0

	charm-tools 2.6.1 + charmstore-client 2.4.0

	charm-tools 2.6.0 + charmstore-client 2.4.0

Indices and tables

	Index

	Module Index

	Search Page

Available Commands

The following subcommands are available and can be invoked as charm <command>
(for example, charm build). Details for each command, including the supported
options and parameters, can be output with either charm help <command> or
charm <command> --help.

	Command

	Description

	add

	add icon, readme, or tests to a charm

	attach

	upload a file as a resource for a charm

	attach-plan

	associates the charm with the plan

	build

	build a charm from layers and interfaces

	create

	create a new charm

	grant

	grant charm or bundle permissions

	help

	Show help on a command or other topic.

	layers

	Show a colored breakdown of what layers each file came from

	list

	list charms for the given users.

	list-plans

	list plans

	list-resources

	display the resources for a charm in the charm store

	login

	login to the charm store

	logout

	logout from the charm store

	proof

	perform static analysis on a charm or bundle

	pull

	download a charm or bundle from the charm store

	pull-resource

	pull a charm resource to the local machine

	push

	push a charm or bundle into the charm store

	push-plan

	push new plan

	push-term

	create new Terms and Conditions document (revision)

	release

	release a charm or bundle

	release-term

	releases the given terms document

	resume-plan

	resumes plan for specified charms

	revoke

	revoke charm or bundle permissions

	set

	set charm or bundle extra-info, home page or bugs URL

	show

	print information on a charm or bundle

	show-plan

	show plan details

	show-plan-revisions

	show all revision of a plan

	show-term

	shows the specified term

	suspend-plan

	suspends plan for specified charms

	terms

	list terms owned by the current user

	terms-used

	list terms required by current user’s charms

	version

	display tooling version information

	whoami

	display jaas user id and group membership

Build Tactics

When building charms, multiple layers are brought together in an ordered,
depth-first recursive fashion. The individual files of each layer are merged
according to a list of merge tactics. These tactics determine whether the file
from a higher layer will replace or be merged with the copy from the lower
layer, with the details of how the merge happens being implemented by the
tactic. Each file is tested against each tactic in a specific order (as
determined by the DEFAULT_TACTICS list), with the first one to match being
applied to the file and all other tactics disregarded.

Built-in Tactics

	ActionsYAML

	Tactic for processing and combining the actions.yaml file from each layer.

	ConfigYAML

	Tactic for processing and combining the config.yaml file from each layer.

	CopyTactic

	Tactic to copy a file without modification or merging.

	CopyrightTactic

	Tactic to combine the copyright info from all layers into a final machine-readable format.

	DistYAML

	Tactic for processing and combining the dist.yaml file from each layer.

	DynamicHookBind

	Base class for process hooks dynamically generated from the hook template.

	ExactMatch

	Mixin to match a file with an exact name.

	ExcludeTactic

	Tactic to handle per-layer excludes.

	IgnoreTactic

	Tactic to handle per-layer ignores.

	InstallerTactic

	Tactic to process any .pypi files and install Python packages directly into the charm’s lib/ directory.

	InterfaceBind

	Tactic to copy the hook template into place for all relation hooks.

	InterfaceCopy

	Tactic to process a relation endpoint using an interface layer.

	JSONTactic

	Base class for tactics dealing with JSON data.

	LayerYAML

	Tactic for processing and combining the layer.yaml file from each layer.

	ManifestTactic

	Tactic to avoid copying a build manifest file from a base layer.

	MetadataYAML

	Tactic for processing and combining the metadata.yaml file from each layer.

	ResourcesYAML

	Tactic for processing and combining the resources.yaml file from each layer.

	SerializedTactic

	Base class for tactics which deal with serialized data, such as YAML or JSON.

	StandardHooksBind

	Tactic to copy the hook template into place for all standard hooks.

	StorageBind

	Tactic to copy the hook template into place for all storage hooks.

	Tactic

	Base class for all tactics.

	VersionTactic

	Tactic to generate the version file with VCS revision info to be displayed in juju status.

	WheelhouseTactic

	Tactic to process the wheelhouse.txt file and build a source-only wheelhouse of Python packages in the charm’s wheelhouse/ directory.

	YAMLTactic

	Base class for tactics dealing with YAML data.

	extend_with_default

	Extend a jsonschema validator to propagate default values prior to validating.

	load_tactic

	Load a tactic from the current layer using a dotted path.

	
class charmtools.build.tactics.ActionsYAML(*args, **kwargs)

	Tactic for processing and combining the actions.yaml file from
each layer.

	
class charmtools.build.tactics.ConfigYAML(*args, **kwargs)

	Tactic for processing and combining the config.yaml file from
each layer.

	
class charmtools.build.tactics.CopyTactic(entity, target, layer, next_config)

	Tactic to copy a file without modification or merging.

The last version of the file “wins” (e.g., from the charm layer).

This is the final fallback tactic if nothing else matches.

	
class charmtools.build.tactics.CopyrightTactic(*args, **kwargs)

	Tactic to combine the copyright info from all layers into a final
machine-readable format.

	
class charmtools.build.tactics.DistYAML(*args, **kwargs)

	Tactic for processing and combining the dist.yaml file from
each layer.

	
class charmtools.build.tactics.DynamicHookBind(name, owner, target, config, output_files, template_file)

	Base class for process hooks dynamically generated from the hook template.

This tactic is not used directly, but serves as a base for the
type-specific dynamic hook tactics, like
StandardHooksBind, or
InterfaceBind.

	
HOOKS = []

	List of all hooks to populate.

	
sign()

	Sign all hook files generated by this tactic.

	
class charmtools.build.tactics.ExactMatch

	Mixin to match a file with an exact name.

	
FILENAME = None

	The filename to be matched

	
classmethod trigger(entity, target, layer, next_config)

	Match if the current entity’s filename is what we’re looking for.

	
class charmtools.build.tactics.ExcludeTactic(entity, target, layer, next_config)

	Tactic to handle per-layer excludes.

If a given layer’s layer.yaml has an exclude list, then any file
or directory included in that list that is provided by the current layer
will be ignored, though any matching file or directory provided by base
layers or any higher level layers will be included.

The exclude list uses the same format as a .gitignore file.

	
class charmtools.build.tactics.IgnoreTactic(entity, target, layer, next_config)

	Tactic to handle per-layer ignores.

If a given layer’s layer.yaml has an ignore list, then any file
or directory included in that list that is provided by base layers will
be ignored, though any matching file or directory provided by the current
or any higher level layers will be included.

The ignore list uses the same format as a .gitignore file.

	
class charmtools.build.tactics.InstallerTactic(entity, target, layer, next_config)

	Tactic to process any .pypi files and install Python packages directly
into the charm’s lib/ directory.

This is used in Kubernetes type charms due to the lack of a proper install
or bootstrap phase.

	
class charmtools.build.tactics.InterfaceBind(name, owner, target, config, output_files, template_file)

	Tactic to copy the hook template into place for all relation hooks.

This tactic is not part of the normal set of tactics that are matched
against files. Instead, it is manually called to fill in the set of
relation hooks needed by this charm.

	
class charmtools.build.tactics.InterfaceCopy(interface, relation_name, role, target, config)

	Tactic to process a relation endpoint using an interface layer.

This tactic is not part of the normal set of tactics that are matched
against files. Instead, it is manually called for each relation endpoint
that has a corresponding interface layer.

	
class charmtools.build.tactics.JSONTactic(*args, **kwargs)

	Base class for tactics dealing with JSON data.

	
dump(data)

	Serialize and write the data to the file.

Must be impelemented by a subclass.

	
load(fn)

	Load and deserialize the data from the file.

Must be impelemented by a subclass.

	
class charmtools.build.tactics.LayerYAML(*args, **kwargs)

	Tactic for processing and combining the layer.yaml file from
each layer.

The input layer.yaml files can contain the following sections:

	includes This is the heart of layering. Layers and interface
layers referenced in this list value are pulled in during charm
build and combined with each other to produce the final layer.

	defines This object can contain a jsonschema used to define and
validate options passed to this layer from another layer. The options
and schema will be namespaced by the current layer name.

	options This object can contain option name/value sections for
other layers.

	config, metadata, dist, or resources These objects can
contain a deletes object to list keys that should be deleted from
the resulting <section>.yaml.

Example, layer foo might define this layer.yaml file:

includes:
 - layer:basic
 - interface:foo
defines:
 foo-opt:
 type: string
 default: 'foo-default'
options:
 basic:
 use_venv: true

And layer bar might define this layer.yaml file:

includes:
 - layer:foo
options:
 foo-opt: 'bar-value'
metadata:
 deletes:
 - 'requires.foo-relation'

	
class charmtools.build.tactics.ManifestTactic(entity, target, layer, next_config)

	Tactic to avoid copying a build manifest file from a base layer.

	
class charmtools.build.tactics.MetadataYAML(*args, **kwargs)

	Tactic for processing and combining the metadata.yaml file from
each layer.

	
class charmtools.build.tactics.ResourcesYAML(*args, **kwargs)

	Tactic for processing and combining the resources.yaml file from
each layer.

	
class charmtools.build.tactics.SerializedTactic(*args, **kwargs)

	Base class for tactics which deal with serialized data, such as YAML or
JSON.

	
apply_edits()

	Apply any edits defined in the final layer.yaml file to the data.

An example edit definition:

metadata:
 deletes:
 - requires.http

	
combine(existing)

	Merge the deserialized data from two layers using deepmerge.

	
dump(data)

	Serialize and write the data to the file.

Must be impelemented by a subclass.

	
load(fn)

	Load and deserialize the data from the file.

Must be impelemented by a subclass.

	
process()

	Now that the tactics for the current entity have been combined for
all layers, process the entity to produce the final output file.

Must be implemented by a subclass.

	
read()

	Read and cache the data into memory, using self.load().

	
class charmtools.build.tactics.StandardHooksBind(name, owner, target, config, output_files, template_file)

	Tactic to copy the hook template into place for all standard hooks.

This tactic is not part of the normal set of tactics that are matched
against files. Instead, it is manually called to fill in the standard
set of hook implementations.

	
class charmtools.build.tactics.StorageBind(name, owner, target, config, output_files, template_file)

	Tactic to copy the hook template into place for all storage hooks.

This tactic is not part of the normal set of tactics that are matched
against files. Instead, it is manually called to fill in the set of
storage hooks needed by this charm.

	
class charmtools.build.tactics.Tactic(entity, target, layer, next_config)

	Base class for all tactics.

Subclasses must implement at least trigger and process, and
probably also want to implement combine.

	
combine(existing)

	Produce a tactic informed by the existing tactic for an entry.

This is when a rule in a higher level charm overrode something in
one of its bases for example.

Should be implemented by a subclass if any sort of merging behavior is
desired.

	
config

	Return the combined config from the layer above this (if any), this,
and all lower layers.

Note that it includes one layer higher so that the tactic can make
decisions based on the upcoming layer.

	
current

	Alias for Tactic.layer

	
entity

	The current entity (a.k.a. file) being processed.

	
classmethod get(entity, target, layer, next_config, current_config, existing_tactic)

	Factory method to get an instance of the correct Tactic to handle the
given entity.

	
layer

	The current layer under consideration

	
layer_name

	Name of the current layer being processed.

	
lint()

	Test the resulting file to ensure that it is valid.

Return True if valid. If invalid, return False or raise a
BuildError

Should be implemented by a subclass.

	
process()

	Now that the tactics for the current entity have been combined for
all layers, process the entity to produce the final output file.

Must be implemented by a subclass.

	
read()

	Read the contents of the file to be processed.

Can be implemented by a subclass. By default, returns None.

	
relpath

	The path to the file relative to the layer.

	
sign()

	Return signature in the form {relpath: (origin layer, SHA256)}

Can be overridden by a subclass, but the default implementation will
usually be fine.

	
target

	The target (final) layer.

	
target_file

	The location where the processed file will be written to.

	
classmethod trigger(entity, target, layer, next_config)

	Determine whether the rule should apply to a given entity (file).

Generally, this should check the entity name, but could conceivably
also inspect the contents of the file.

Must be implemented by a subclass or the tactic will never match.

	
class charmtools.build.tactics.VersionTactic(charm, target, layer, next_config)

	Tactic to generate the version file with VCS revision info to be
displayed in juju status.

This tactic is not part of the normal set of tactics that are matched
against files. Instead, it is manually called to generate the version
file.

	
class charmtools.build.tactics.WheelhouseTactic(*args, **kwargs)

	Tactic to process the wheelhouse.txt file and build a source-only
wheelhouse of Python packages in the charm’s wheelhouse/ directory.

	
read()

	Read the contents of the file to be processed.

Can be implemented by a subclass. By default, returns None.

	
class charmtools.build.tactics.YAMLTactic(*args, **kwargs)

	Base class for tactics dealing with YAML data.

Tries to ensure that the order of keys is preserved.

	
dump(data)

	Serialize and write the data to the file.

Must be impelemented by a subclass.

	
load(fn)

	Load and deserialize the data from the file.

Must be impelemented by a subclass.

	
charmtools.build.tactics.extend_with_default(validator_class)

	Extend a jsonschema validator to propagate default values prior
to validating.

Used internally to ensure validation of layer options supports
default values.

	
charmtools.build.tactics.load_tactic(dpath, basedir)

	Load a tactic from the current layer using a dotted path.

The final element in the path should be a
Tactic subclass.

Custom Tactics

A charm or layer can also define one or more custom tactics in its layer.yaml
file. The file can contain a top-level tactics key, whose value is a list of
dotted Python module names, relative to the layer’s base directory. For
example, a layer could include this in its layer.yaml:

tactics:
 - tactics.my_layer.READMETactic

This would cause the build command to look for a module tactics/my_layer.py
with a class of READMETactic in it, which must inherit from
Tactic.

Custom tactics are tested before the built-in tactics, so they can override
the behavior of built-in tactics if desired. Care should be taken if doing
this because changing the behavior of built-in tactics can end up breaking
other layers or charms.

Reproducible Charms

When building charms, multiple layers are brought together in an ordered,
depth-first recursive fashion. The individual files of each layer are merged,
and then python modules are brought in according to wheelhouse.txt files
that may exist in each layer.

Layers (and Interfaces) are typically Git repositories, and by default the
default branch (usually called master) of the repository is fetched and
used.

Also, although the top level Python modules can be pinned in the
wheelhouse.txt files, any dependent modules are fetched as their latest
versions. This makes re-building a charm with the same layers and modules
tricky, which may be required for stable charms. It is possible, by populating
layer and interface directories directly, and by pinning every Python module in
a wheelhouse.txt override file that is passed using the
--wheelhouse-overrides option to the charm build command.

An alternative strategy is to use a new feature of the charm build command
which can generate a lock file that contains all of the layers and Python
modules, and their versions. This can then, for subsequent builds, be used to
fetch the same layer versions and Python modules to re-create the charm.

As the lock file is a JSON file, it can be manually edited to change a
layer version if a new version of a stable charm is needed, or a python module
can be changed.

Additionally, it is possible to track a branch in the repository for a layer so
that a stable (or feature) branch can be maintained and then charms rebuilt
from that branch.

The new options for this feature are:

	--write-lock-file

	--use-lock-file-branches

	--ignore-lock-file

Creating the lock file

To create a lock file, the option --write-lock-file is passed to the
charm build command. This option automatically ignores the existing lock
file, and rebuilds the charm using the latest versions of the layers and the
versions of the modules as determined in the various wheelhouse.txt files.

Python module versions are also recorded. If a VCS repository is used for the
python module, then any branch specified is also recorded, along with the
commit.

At the end of the build, the lock file is written with all of the layer and
Python module information.

The lock file is installed in the base layer directory so that it can be
committed into the VCS and used for subsequent builds.

The name of the lock file is build.lock.

Rebuilding the charm from the lock file

If a lock file (build.lock) is available in the top layer, then it will be
used to control the versions of the layers and modules by default. i.e. the
presence of the lock file controls the build.

Three options are available which can influence the build when a lock file is
present:

	--ignore-lock-file

	--use-lock-file-branches

	--wheelhouse-overrides

If the --ignore-lock-file option is used, then the charm is built as though
there is no lock file.

If the --use-lock-file-branches is used, then, for VCS items (layers,
interfaces, and Python modules specified using a VCS string), then the branch
(if there was one) will be used, rather than the commit version. This can be
used to track a branch in a layer or Python module.

Note: if --wheelhouse-overrides is used, then that wheelhouse will override
the lock file. i.e. the lock file overrides the layers’ wheelhouse.txt
file, and then the --wheelhouse-overrides then can override the lock-file.
This is intentional to allow the build to perform specific overrides as
needed.

Other useful information

This is the first iteration of ‘reproducible charms’. As such, only Git is
supported as the VCS for the layers, and Git and Bazaar for Python modules. A
future iteration may support more VCS systems.

Only the top layer is inspected for a build.lock file. Any other layers
are considered inputs and their build.lock files are ignored (if they are
present).

Also, regardless of the wheelhouse.txt layers, the lock file will override
any changes that may be introduced in stable branches, if they are bing tracked
using --use-lock-file-branches. This may lead to unexpected behaviour.

Contributing

The charm [https://snapcraft.io/charm/] command is created from the combination of two repositorires:

	charm-tools [https://github.com/juju/charm-tools/] handles local operations, such as building and linting charms

	charmstore-client [https://github.com/juju/charmstore-client/] handles interactions with the charm store, such as
pushing or pulling charms, or managing access controls

Bugs should be filed against the appropriate repository for the most efficient
handling.

Changelog

charm-tools 2.8.2 + charmstore-client 2.5.0

Monday February 1 2021

charm-tools

	Fix reproducible charms issues (#598)

charm-tools 2.8.1 + charmstore-client 2.5.0

Wednesday January 27 2021

charm-tools

	Add option to create .charm file (#592)

	Add ‘docs’ to known metadata fields (#591)

	Add reproducible charm build feature (#585)

	Fix exception rendering “already promulgated” error (#590)

	Align setup.py to requirements.txt (#589)

	Fix TypeError from linter on X.Y min-juju-version (#588)

	Make output_dir the same as build_dir (#564)

charm-tools 2.8.0 + charmstore-client 2.5.0

Tuesday November 10 2020

charm-tools

	Fix snap build for updated charmstore-client (#587)

	Store rev when pull-source on a subdir layer (#583)

	Add revision info to output of pull-source (#582)

	Add –branch option to pull-source (#581)

	Raise more useful BuildError on missing pkg name (#579)

	Deprecate Operator charm template (#578)

charmstore-client

	Update dependencies

	Make charm-push support archives

charm-tools 2.7.8 + charmstore-client 2.4.0+git-13-547c6f2

Tuesday July 21 2020

charm-tools

	Normalize package names when processing wheelhouse (#576)

charm-tools 2.7.7 + charmstore-client 2.4.0+git-13-547c6f2

Monday July 20 2020

charm-tools

	Fix handling of comments in wheelhouse (#574)

charm-tools 2.7.6 + charmstore-client 2.4.0+git-13-547c6f2

Thursday July 16 2020

charm-tools

	Switch to requirements-parser for wheelhouse (#572)

charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2

Thursday June 25 2020

charm-tools

	Process wheelhouse.txt holistically rather than per-layer (#569)

	Handle invalid config file more gracefully (#567)

	Default to charming category of the Juju Discourse (#565)

charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2

Thursday June 25 2020

charm-tools

	Process wheelhouse.txt holistically rather than per-layer (#569)

	Handle invalid config file more gracefully (#567)

	Default to charming category of the Juju Discourse (#565)

charm-tools 2.7.4 + charmstore-client 2.4.0+git-13-547c6f2

Thursday March 26 2020

charm-tools

	Add workaround for user site package conflicts (#561)

	Add Build Snap action so PRs have snap to test easily (#562)

charm-tools 2.7.3 + charmstore-client 2.4.0+git-13-547c6f2

Saturday Feb 29 2020

charm-tools

	Add Operator charm template (#557)

	Add OpenStack templates to requirements (#558)

	Fix 471 (#556)

	Add functions support; (#555)

	Allow boolean config options to have null default (#554)

charmstore-client

	fix dependencies

	cmd/charm: allow users with domains in ACLs

	Updated charmstore and charmrepo dependency.

	charm whoami: return an error when the user is not logged in

	Update dependencies

	Fix dependency files

charm-tools 2.7.2 + charmstore-client 2.4.0+git-3-cbbf887

Tuesday October 8 2019

charm-tools

	Add opendev.org https and git fetcher (#553)

charmstore-client

	Disallow release in promulgated namespace

charm-tools 2.7.1 + charmstore-client 2.4.0

Tuesday September 24 2019

charm-tools

	Fix maintainer validation not handling unicode (#550)

	Fix snap builds on other arches (#548)

	Change deployment.type optional (for k8s charms) (#547)

	Move daemonset to deployment.type (for k8s charms) (#546)

charm-tools 2.7.0 + charmstore-client 2.4.0

Wednesday September 18 2019

charm-tools

	Fix charm-build conflict when building concurrently (#545)

	Rename README files with markdown extension (#543)

	Update charm.1 manpage (#522)

	Feature/add deployment field2metadata (#544)

	fix charm build help message (#542)

	Cleanup cached layers / interfaces after build (#540)

	edge case for setting charm_ver (#538)

charm-tools 2.6.1 + charmstore-client 2.4.0

Thursday July 11 2019

charm-tools

	Remove bad URL from PR template (#537)

	Update pypi release target to work with newer tox (#530)

	requirements.txt: update version limit for requests (#535) (#536)

	Fix config key regexp to allow short config keys. (#534)

charm-tools 2.6.0 + charmstore-client 2.4.0

Thursday June 6 2019

charm-tools

	Honor ignores / excludes when checking for post-build changes (#529)

	Resolve vergit runtime dependency (#527)

	Upgrade to use py3.7 on Travis (#523)

	Fix installing from git without vergit installed (#520)

	Fix installation dependency on vergit (#519)

	Gracefully handle JSON decode errors from layer index (#516)

	Add support for layer-index and fallback-layer-index (#515)

	Ensure setuptools for charmstore-client build (#509)

	Refactor version handling in snap to work with core18 (#508)

	Make series required (#499)

	Add setuptools to requirements.txt (#498)

	Fix charm-layer handling of old format build-manifest (#496)

	Fix nested build dir check in Python2 (#494)

	Improve docs for LayerYAML tactic (#493)

	Add promulgate and unpromulgate commands (#491)

	Fix and improve charm-layers (#492)

	Fix checking of build dir nested under source dir (#490)

	Add basic documentation (#489)

	Allow build folders in the charm (#486)

	Fix CHARM_HIDE_METRICS environment variable (#483)

	Address security alerts from GitHub (#484)

	Use shutil.copytree instead of path.rename (#482)

charmstore-client

	Remove the temporary file

	update charmrepo dependency

	update charm dependency

	internal/ingest: set permissions correctly

	cmd/charm-ingest: use –hardlimit not –softlimit

	cmd/charm-ingest: expose disk limits

	make tests pass

	internal/ingest: transfer resources

	cmd/charm-ingest: Add a basic ingest command

	internal/ingest: resolve resources in whitelist

	internal/ingest: expose public ingest API.

	cmd/charm-ingest: Add the basics of whitelist parsing

	restore go-cmp dependency version

	Move cmd/ingest to internal/ingest

	cmd/ingest: fix comment from previous review

	cmd/ingest: run tests against real charmstore servers

	cmd/ingest: core ingestion logic

	cmd/charm/charmcmd: add some basic tests for show command

	cmd/charm/charmcmd: improve output in charm show for unpublished charms

	cmd/ingest: new ingest command

	cmd/charm/charmcmd: improve incompatible registry version error

	Update usage of docker to oci-image resource type.

	Reviews.

	cmd/charmcmd: Better yaml output for resources.

	cmd/charmcmd: Allow multiple users in list.

	all: use quicktest for tests

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 charmtools	

 	
 	
 charmtools.build.tactics	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | P
 | R
 | S
 | T
 | V
 | W
 | Y

A

 	
 	ActionsYAML (class in charmtools.build.tactics)

 	
 	apply_edits() (charmtools.build.tactics.SerializedTactic method)

C

 	
 	charmtools.build.tactics (module)

 	combine() (charmtools.build.tactics.SerializedTactic method)

 	(charmtools.build.tactics.Tactic method)

 	config (charmtools.build.tactics.Tactic attribute)

 	
 	ConfigYAML (class in charmtools.build.tactics)

 	CopyrightTactic (class in charmtools.build.tactics)

 	CopyTactic (class in charmtools.build.tactics)

 	current (charmtools.build.tactics.Tactic attribute)

D

 	
 	DistYAML (class in charmtools.build.tactics)

 	dump() (charmtools.build.tactics.JSONTactic method)

 	(charmtools.build.tactics.SerializedTactic method)

 	(charmtools.build.tactics.YAMLTactic method)

 	
 	DynamicHookBind (class in charmtools.build.tactics)

E

 	
 	entity (charmtools.build.tactics.Tactic attribute)

 	ExactMatch (class in charmtools.build.tactics)

 	
 	ExcludeTactic (class in charmtools.build.tactics)

 	extend_with_default() (in module charmtools.build.tactics)

F

 	
 	FILENAME (charmtools.build.tactics.ExactMatch attribute)

G

 	
 	get() (charmtools.build.tactics.Tactic class method)

H

 	
 	HOOKS (charmtools.build.tactics.DynamicHookBind attribute)

I

 	
 	IgnoreTactic (class in charmtools.build.tactics)

 	InstallerTactic (class in charmtools.build.tactics)

 	
 	InterfaceBind (class in charmtools.build.tactics)

 	InterfaceCopy (class in charmtools.build.tactics)

J

 	
 	JSONTactic (class in charmtools.build.tactics)

L

 	
 	layer (charmtools.build.tactics.Tactic attribute)

 	layer_name (charmtools.build.tactics.Tactic attribute)

 	LayerYAML (class in charmtools.build.tactics)

 	lint() (charmtools.build.tactics.Tactic method)

 	
 	load() (charmtools.build.tactics.JSONTactic method)

 	(charmtools.build.tactics.SerializedTactic method)

 	(charmtools.build.tactics.YAMLTactic method)

 	load_tactic() (in module charmtools.build.tactics)

M

 	
 	ManifestTactic (class in charmtools.build.tactics)

 	
 	MetadataYAML (class in charmtools.build.tactics)

P

 	
 	process() (charmtools.build.tactics.SerializedTactic method)

 	(charmtools.build.tactics.Tactic method)

R

 	
 	read() (charmtools.build.tactics.SerializedTactic method)

 	(charmtools.build.tactics.Tactic method)

 	(charmtools.build.tactics.WheelhouseTactic method)

 	
 	relpath (charmtools.build.tactics.Tactic attribute)

 	ResourcesYAML (class in charmtools.build.tactics)

S

 	
 	SerializedTactic (class in charmtools.build.tactics)

 	sign() (charmtools.build.tactics.DynamicHookBind method)

 	(charmtools.build.tactics.Tactic method)

 	
 	StandardHooksBind (class in charmtools.build.tactics)

 	StorageBind (class in charmtools.build.tactics)

T

 	
 	Tactic (class in charmtools.build.tactics)

 	target (charmtools.build.tactics.Tactic attribute)

 	
 	target_file (charmtools.build.tactics.Tactic attribute)

 	trigger() (charmtools.build.tactics.ExactMatch class method)

 	(charmtools.build.tactics.Tactic class method)

V

 	
 	VersionTactic (class in charmtools.build.tactics)

W

 	
 	WheelhouseTactic (class in charmtools.build.tactics)

Y

 	
 	YAMLTactic (class in charmtools.build.tactics)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Charm Tools documentation

 		
 Available Commands

 		
 Build Tactics

 		
 Built-in Tactics

 		
 Custom Tactics

 		
 Reproducible Charms

 		
 Creating the lock file

 		
 Rebuilding the charm from the lock file

 		
 Other useful information

 		
 Contributing

 		
 Changelog

 		
 charm-tools 2.8.2 + charmstore-client 2.5.0

 		
 charm-tools 2.8.1 + charmstore-client 2.5.0

 		
 charm-tools 2.8.0 + charmstore-client 2.5.0

 		
 charm-tools 2.7.8 + charmstore-client 2.4.0+git-13-547c6f2

 		
 charm-tools 2.7.7 + charmstore-client 2.4.0+git-13-547c6f2

 		
 charm-tools 2.7.6 + charmstore-client 2.4.0+git-13-547c6f2

 		
 charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2

 		
 charm-tools 2.7.5 + charmstore-client 2.4.0+git-13-547c6f2

 		
 charm-tools 2.7.4 + charmstore-client 2.4.0+git-13-547c6f2

 		
 charm-tools 2.7.3 + charmstore-client 2.4.0+git-13-547c6f2

 		
 charm-tools 2.7.2 + charmstore-client 2.4.0+git-3-cbbf887

 		
 charm-tools 2.7.1 + charmstore-client 2.4.0

 		
 charm-tools 2.7.0 + charmstore-client 2.4.0

 		
 charm-tools 2.6.1 + charmstore-client 2.4.0

 		
 charm-tools 2.6.0 + charmstore-client 2.4.0

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

